99超碰中文字幕在线观看-天天干天天日天天舔婷婷-我看操逼的好看的女人的-日本一二三四五区日韩精品

瑞士萬通中國有限公司

離子色譜在乙醇壓力作用下對運(yùn)動發(fā)酵單胞菌的轉(zhuǎn)錄組進(jìn)行剖析

時(shí)間:2014-5-7 閱讀:4000
分享:

Transcriptome profiling of Zymomonas mobilis under ethanol stress

離子色譜在乙醇壓力作用下對運(yùn)動發(fā)酵單胞菌的轉(zhuǎn)錄組進(jìn)行剖析

Abstract

Background: High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli.

However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress.

Results: We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/ membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair,

transport, transcriptional regulation, some universal stress response, etc.

Conclusion: In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still

unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic ethanol production in the future.

會員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗(yàn)證碼

收藏該商鋪

X
該信息已收藏!
標(biāo)簽:
保存成功

(空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~
撥打電話 產(chǎn)品分類
在線留言
眉山市| 库车县| 白城市| 马关县| 囊谦县| 平凉市| 加查县| 靖远县| 福海县| 章丘市| 伊春市| 共和县| 云霄县| 宁夏| 吴川市| 岳阳市| 新和县| 天长市| 哈巴河县| 海林市| 南靖县| 南川市| 韩城市| 措美县| 富川| 隆林| 双城市| 伊金霍洛旗| 金乡县| 崇仁县| 蛟河市| 方正县| 密云县| 平凉市| 郎溪县| 梁河县| 穆棱市| 宁明县| 密云县| 张家港市| 遵义县|